
Series # 1: date: 10Feb,2006.
CONTENTS : 1. Input, put, inputc, inputn, putc & putn functions.
 2. Call execute routine.

INPUT FUNCTION :
Syntax : destination_data = input(source_data, informat);

LOGICAL ANALYSIS of how the input function can work:

 The input function always takes the source_data as character data. The
destination_data can either be numeric or character. So how are we going to decide
whether the destination data going to be character or numeric. So the informat is what
will decide. The data_type in which the informat absorbs the data decides the data_type
of the destination_data. Therefore if the informat is numeric then the destination_data is
going to be numeric and if the informat is character then the destination_data is going to
be character.

MATHEMATICALLY :
The input function is a one to many correspondence. (character to character/numeric). So
we can say to differentiate the correspondence we use the informat as a differentiator.

PROGRAM
/***/
/* input function
/***/
data one;/* in input the format decides whether the result is char or
num */
 salary = '10000';
 salc = input(salary,$5.); * character --> character. informat-->
character;
 saln = input(salary,5.); * character --> numeric. informat
numeric;
 put salary= salc= saln=;
run;
/**/
OUTPUT
salary=10000 salc=10000 saln=10000

Dataset
salary salary2 salc1 salc2
10000 10000 $10,000 10000

PUT FUNCTION
Syntax : destination data = put (source_data, format);

LOGICAL ANALYSIS of how the put function works :

 The put function takes the source_data as character or numeric but the
destination_data is always the character data. Here the format helps in getting a numeric
format to a character destination_data. For e.g. salary in numeric type can be applied a
format dollar8. and stored in character form in the salaryc variable.
 The format is character if the source_data is character and numeric if the
source data is numeric.

MATHEMATICALLY:
 The Put function is many to one correspondence.

PROGRAM:
/***/
 * put function *
/***/
data output.one;
 salaryc = 10000;
 salaryn = '10000';
 salc1 = put(salaryc,DOLLAR10.2);* numeric --> character. format
has to be numeric;
 salc2 = put(salaryn,$10.);* character --> character. format has
to be character;
run;
/**/

 OUTPUT:
salc1=$10,000.00 salc2=10000

DATASET:
salary salary2 salc1 salc2
10000 10000 $10,000.00 10000

SCL FUNCTION WHICH ARE DERIVED FROM INPUT & PUT

FUNCTION.
Functions inputc, inputn, putc and putn are derived SCL function from the input and the
put functions. They are meant to convert the data from one form(numeric/char) to other
form(char/numeric) and we can also have the corresponding format. The main advantage
of these SCL functions is that they can be used in the macro open code using the
%sysfunc. Note the informat given as the second argument to the SCL function is given
in quotes.

INPUTC FUNCTION & INPUTN FUNCTION.
 Syntax : destination_data = inputc(source_data, informat)
 Syntax : destination_data = inputn (source_data , informat);

PUTC FUNCTION & PUTN FUNCTION.
 Syntax : destination_data = putc(source_data, format)
 Syntax : destination_data = putn (source_data , format);

Note : If the INPUTC/INPUTN function returns a value to a variable that has not yet
been assigned a length, by default the variable length is determined by the length of the
first argument.

PROGRAM:

data output.inputcnf;
 salaryc = '10000';
 salaryd = '$10,000';
 * inputc : character --> character : informat --> character;
 sal_cha1 = inputc(salaryc, '$6.');
 * inputn : character --> numeric : informat --> numeric;
 sal_num1 = inputn (salaryd, 'dollar7.');
 * putc : character --> character : format --> character ;
 sal_cha2 = putc(sal_cha1,'$6.');
 * putn : numeric --> character : format --> numeric;
 sal_cha3 = putn(sal_num1,'dollar7.');
run;

 The inputc function is that half part of the input function where the source_data is
character, the destination data is also character and the informat that we use is the
character informat. This is quite evident from the character ‘c’ in the function name.

ABSTRACTION:
 The main utility of inputc/inputn is to convert a character(with format ‘A’)
to a (plain) character or numeric data.(here plain means without any format). And
the utility of the putc/putn function is to convert a (plain) character/numeric data
into a character data with a particular format.

Formatted char data using inputc/inputn plain character/numeric data resp.
Plain char/numeric data using putc/putn formatted char data.

NOTE: The SCL functions enables you to specify a character informat at run time

CALL EXECUTE:

 The main use of the call execute routine is to execute a macro in the data step it is
one of the interfaces to the macro from the data step.
 To Understand call execute routine we need remember some facts. The data step
is first compiled and during the compilation stage the PDV is being constructed.
 The call execute is useful when you want to execute a macro conditionally.

1. If call execute produces macro language elements those elements execute
immediately.

2. If call execute produces SAS language statements or if the macro language
elements generate SAS language elements then they execute at the end of the data
step boundary.

 Because macro references execute immediately and SAS statements do not execute until
after a step boundary, you cannot use CALL EXECUTE to invoke a macro that contains
references for macro variables that are created by CALL SYMPUT in that macro.

PROGRAM :

%macro test;
 %put in the macro;
%mend;
data one;
 input name $;
 put 'in the data step';
 call execute('%test');
datalines;
sachin
gadkar
;
run;

%macro testing;
 data _null;
 put 'in the macro';
 run;
%mend;
data two;
 input name $;
 put 'in the data step';
 call execute('%testing');
datalines;
sachin
gadkar
;
run;

LOG :

440 %macro test;
441 %put in the macro;
442 %mend;
443 data one;
444 input name $;
445 put 'in the data step';
446 call execute('%test');
447 datalines;

in the data step
in the macro
in the data step
in the macro
NOTE: The data set WORK.ONE has 2 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE routine executed successfully, but no SAS statements were generated.
450 ;
451 run;
452
453 %macro testing;
454 data _null;
455 put 'in the macro';
456 run;
457 %mend;
458 data two;
459 input name $;
460 put 'in the data step';
461 call execute('%testing');
462 datalines;

in the data step
in the data step
NOTE: The data set WORK.TWO has 2 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE generated line.
465 ;
1 + data _null; put 'in the macro'; run;

in the macro
NOTE: The data set WORK._NULL has 1 observations and 0 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

2 + data _null; put 'in the macro'; run;

in the macro
NOTE: The data set WORK._NULL has 1 observations and 0 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

466 run;

Sachin Gadkar.
Cognizant Tech.Soln.

