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Chapter 1

INTRODUCTION

This are notes which I have prepared for the lectures to be given to the students

preparing for IIT-JEE.
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Chapter 2

Determinants and Matrices

2.1 Consistency and Determinancy of a linear sys-

tem

A system of linear equation is as follows

n
∑

j=1

aijxj = di

where j ∈ {1, 2, ..., n}

Definition 2.1.1. Homogenous & nonhomogenous linear system

If the terms di’s are all zero then the system is said to be a homogenous system. If

the system has atleast one di nonzero then the system is said to be non-homgenous

system.

Depending on whether a system has atleast one solution or no solution it is

defined as follows

Definition 2.1.2. Consistent sytem of linear equations

A linear system is defined as consistent sytem if it has atleast one solution. If a

system has no solution then the system is said to be inconsistent.

Definition 2.1.3. Determinate or Indeterminate linear system

A system is defined as a Determinate system if it has a unique solution if it has more

than one solution then it is said to be indeterminate.
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Definition 2.1.4. Trivial solution If a system has x = 0, y = 0, z = 0 as the only

solution then the system is said to have trivial solution. The system is said to have

nontrivial solution if there are infinite solutions.

Inconsistent system

Linear system

Consistent system

Determinate system Indeterminate system

no solutionatleast 
one solution

unique solution infinite solution

Figure 2.1: Linear system solutions.

We will discuss the above terms only for system of two and three unknowns

only. We would learn the following things with analogy from 3D geometry.

1. Homogenous system of two unknown.

a1x+ b1y = 0

a2x+ b2y = 0

Let us use coordinate geometry to understand this system. These

equations are lines passing through the origin. Hence their obvious
solution that is point of intersection is origin,(0, 0). Now there are

two possibilities,
1. The lines are parallel to each other, means they are lying on
one another.

2. The lines are not parallel to each other, means (0, 0) is the only
intersection.

Now for the lines to be parallel we need their slopes to be equal,
−a1

b1
= −a2

b2
, this is nothing but the ∆ = 0 condition. That’s why

the determinant of the coefficients of x and y would play a vital
role in deciding the nature of the system. See the next figure.
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lines passing through
origin hence one
intersection point is 
origin. Is consistent system since

(0,0) is always a solution

This system is determinate.
if ∆  is non−zero.

The lines if have equal slopes then
they would be lying on eachother.
Resulting infinite intersection, infinite
solutions.right!!

The lines with unequal slopes
would cut only in the origin. Slopes
are unequal means      not equal
to zero.

∆

This system is indeterminate
∆if  = 0

∆ = 
a 1
a

b 1

2 b 2

a x + b y =2

a 1x + b 1y = 0

0

no inconsistent 
case since origin
would always be
one solution.

2

Figure 2.2: Homogenous linear system in two unknowns.

2. Non-homogenous sytem of two unknowns.

a1x+ b1y = c1

a2x+ b2y = c2

where atleast one of c1, c2 is non-zero.

Let us make a note of what the following terms mean in two-Dim
geometry.

∆ =

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

∆x =

∣

∣

∣

∣

c1 b1
c2 b2

∣

∣

∣

∣

∆y =

∣

∣

∣

∣

a1 c1
a2 c2

∣

∣

∣

∣

Again with analogy from coordinate geometry, these lines represent

two lines, atleast one of which is not passing through the origin.
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Now there are three cases:
1 The lines are parallel to each other but are away at a constant

non-zero distance from each other.
This is for e.g the lines x + y = 1 and x + y = 2 are parallel at

constant distance 1√
2

from each other.
2. The lines are parallel to each other and are one above the other,
i.e the distance between them is zero.

This is for e.g the lines x + y = 1 and 2x + 2y = 2 which are
parallel and at the same time lying on each other.

3. The lines are not parallel that means they got to intersect only
in one single point(unique solution)

This is in for e.g the lines x+ y = 1 and x− y = 1 which are not
parellel and hence have to intersect in a unique point.

If the lines don’t have the same
x or y−intercept .ie.
∆x ∆y0 0
Then the lines dont intersect at
all so the system has no solution.
The system is inconsistent.

= =

∆ = 1
a

b 1

2 b 2

a

∆x ∆y= 0 = 0 ,then they

If the lines also have same
x and y−intercept. ie.

are lying on each other. So 
infinite solution. So the system
is consistent & indeterminate.

∆ =
c

c

b

b
1

22

1
y

∆ =x
a

a

c

c
1 1

2 2

If the slopes of these lines
are not equal. i.e 
∆=0
The lines will surely intersect
in one point. So there is unique 
solution. So the system is 
consistent and determinate.

If the slopes of the lines
are same i.e  ∆=0

a x + b y =2 c 2

atleast one of c 1
c2 is non−zero.

x b 1 c 1a 1 + y =

2

Figure 2.3: Non-homogenous linear system in two unknowns.
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x

y

x

y

determinate.
The system is consistent & 

The system has a unique  
solution.

The system is consistent &
indeterminate.
The system has infinite 
solutions.

The system is inconsistent.
The system has no 
solution.

NonHomogenous
linear system in two
unknowns

Figure 2.4: Conclusion of the above discussion on the basis of ∆.
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Chapter 3

IIT 2004 Mathematics Paper

3.1 Mains paper

(a) Find the center and radius of the circle determined by all

complex numbers z = x + iy satisfying
∣

∣

∣

z−α
z−β

∣

∣

∣
= k, where

α = α1 + iα2, β = β1 + iβ2 are fixed complex numbers and
k 6= 1.

solution : The centre is at α−k2β
1−k2 i.e., at

(

α1−k2β1

1−k2 , α2−k2β2

1−k2

)

and

radius is k
∣

∣

∣

α−β
1−k2

∣

∣

∣
.

(b)
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Chapter 4

Limits And Continuity

4.1 Introduction to Limits and Continuity

Why do we at all need to learn the concept of limit and continuity

?

Let me begin with a story. A road was thought to be constructed

through a jungle joining two villages on either side of the jungle.
But then there was a problem, through the centre of the jungle

there was a river passing. Now the villagers from both the villages
had two problems.

(a) They had to built the road from either side to reach at the

same place opposite about the river.

(b) Then after getting the road to come opposite to each other
they needed to construct the bridge over the river.

Now the success of the road linking both villages requires (neces-

sary condition) both the roads to reach exactly opposite on the
river. If this is met then the next stage of constructing the bridge

will continue. So here the basic requirement is getting the road on
exact opposite bank.

Now why this whole story ! This story goes in parellel with the

concept of continuity. The concept of continuity means construct-
ing a continuous road linking both the villages. So for continuity,

the necessary condition is existence of limit that is same as con-
structing the road on both the sides of river to come at the same
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location opposite of the river. Now the next step is filling the gap
that is building the bridge.

4.2 Limits

We see

limx→a f(x) = l (4.1)

then don’t have misunderstanding due to that equality sign. There
is no equality when we specify a limit to f(x) at x = a. Let us un-
derstand what do we mean by the lim specified above. limx→a f(x) =

l actually means f(x) → l as x→ a. Since in our scope we have the
x tending to a in one dimension we only have to see how it tends to

a from the left of a and right of a. So we need to find how we find
limx→a− f(x) i.e the L.H.L (left hand limit) and limx→a+ f(x) i.e

R.H.L (right hand limit). To be true there is nothing like equation

If a, b, c are real numbers then

(a) If a < b⇒ a+ c < b+ c (note its true whether c > 0 or c < 0

or c = 0

(b) If a < b⇒ ac < bc for c > 0 or ac > bc for c < 0.

(c) If a < b and p, q > 0 then ap < bp and a1/q < b1/q.

(d) If 0 < a < 1 ⇒ 0 < · · · < a3 < a2 < a < 1

and if a > 1 ⇒ 1 < a < a2 < · · · < an − 1 < · · · <∞.

4.3 A.M-G.M inequality

There is this heavily used inequality called the A.M-G.M in-

equality If a, b > 0 then a+b
2 ≥

√
ab

It can also be generalised for n positive real numbers {a1, a2, ..., an}
then we have

∑

ai

n ≥ (Πai)
1/n

NOTE A.M-G.M inequality works only for positive real values.
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And A.M-G.M inequality will be useful when you see symmetry in
the question since the inequality is also symmetrical or cyclic..

Can you prove the A.M-G.M inequality with two methods.
Hint: Method-1 is to use (a− b)2 ≥ 0 and Method-2 is to use

4.4 Symmetry

The maximum of minimum value (which ever exists) of an ex-
pression is attained only when all the terms in the symmetrical

expression are equal.

Example 4.4.1. The minimum value of the expression (a − b)2

exists and is 0 when a = b.
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Chapter 5

Indefinite Integration

5.1 Basic Formulae from definition of Indefi-

nite integration

Indefinite integration is inverse operation of differentiation. If
d
dxF (x) = f(x) then

∫

f(x) dx = F (x). So our definition of Indef-

inite integral goes as

Definition 5.1.1. Indefinite integral is defined as antiderivatives.

(a) d
dxx

n+1 = (n+ 1)xn ⇒
∫

xn dx = xn+1

n+1 + c, n 6= −1

(b) d
dx ln(x) = 1

x ⇒
∫

1
x dx = ln(x) + c

(c) d
dxa

x = axlna⇒
∫

ax dx = ax

lna + c

(d) d
dx
ex = ex ⇒

∫

ex dx = ex + c

(e) d
dx sin(x) = cos(x) ⇒

∫

cos(x) dx = sin(x) + c

(f) d
dx cos(x) = − sin(x) ⇒

∫

sin(x) dx = − cos(x) + c

(g) d
dx tan(x) = sec2(x) ⇒

∫

sec2(x) dx = tan(x) + c

(h) d
dx cot(x) = −cosec2(x) ⇒

∫

cosec2(x) dx = − cot(x) + c

(i) d
dx sec(x) = sec(x) tan(x) ⇒

∫

sec(x) tan(x) dx = sec(x) + c

(j) d
dxcosec(x) = −cosec(x) cot(x) ⇒

∫

cosec(x) cot(x) dx = −cosec(x)+

c

Now these basic formulae (as we will be calling them) are the only
formulae due to definition available to us for solving problems. To

11



solve any problem in integration we have to reduce the problem to
one of the above formulae.

Now the obvious first thing that comes to our mind is, what is
that c in the indefinite integration formulae above. It is called the

constant of integration. Why should we need it ? well that is what
u have to do (think!) make use of definition

Theorems for integration which can be derived from the definition.

(a)
∫

kf(x) dx = k
∫

f(x) dx

(b)
∫

(f(x)±g(x)) dx =
∫

f(x) dx±
∫

g(x) dx this can be extended
to integral of sum of a finite number of functions.

5.2 Decomposition of an integrand as sum of

integrands

This is the basic method of solving integral problems. We have to
decompose an integrand into two or more integrands and use the

second theorem of adding the individual finite number of integrals.

Example 5.2.1.
∫

sec2(x)cosec2(x) dx
use

sec2(x)cosec2(x) = sec2(x) + cosec2(x)

=
∫

sec2(x) dx+
∫

cosec2(x) dx = tan(x) − cot(x) + c

5.3 Method of Substitution

Method of substitution is helpful in simplifying an integration
problem to one of the simpler forms where the above basic formulae

can be applied to solve the problem. First let us see the theory.
If

∫

f(x) dx = F (x) and x depends on another variable t so x =
φ(t) so

dx = φ′(t)dt

now
∫

f(x) dx =

∫

f(φ(t))φ′(t)dt

12



Note the LHS integral may not be easy to solve or may not be in
the above listed basic formulae but the RHS is most of the times

in simpler form and using basic formulae we solve it.

Let us see with an example. We know integrals of only sin(x) and
cos(x). Now we see of tan(x).

Example 5.3.1.
∫

tan(x) dx =

∫

sin(x)

cos(x)
dx

Now we use method of substitution. put t = cos(x) ⇒ dt =
− sin(x)dx

= −
∫

dt

t
= −ln|t| + c = −ln| cos(x)| + c = ln| sec(x)| + c

Let us come out of integration problem solving for a moment. Let
us move freely in other parts of basic Calculus. Now in this method

of substitution what are we exactly doing. We were working in
the space of variable x and by the substitution we go to a new
space of variable t. In this new space do we go alone? No we

take our problem of integration to be solved. Now the structure,
appearance of our problem has changed in this new space. You

have done this kind of a thing before also, do u remember? In
logarithms, you had to multiply two numbers say, you apply the

log function and carry them there the numbers altogether change
and multiplication becomes addition you add and then what do
u do? You apply the antilog, which is nothing but the inverse

function of log function (i.e. exponential function) and get back
to the original space of x. This is why we are more interested in

those functions which have inverse. A function can simplify my
problem by traversing in a different space but if there is no inverse

function to that function then I can’t get back the solution to my
original space. This is the significance of inverse function.

Coming back to integration.
Similarly by the same approach as in the example above, we have

13



Example 5.3.2.
∫

cot(x) dx = ln| sin(x)| + c

Now we generalize an obsevation from this two formulae. That is,

in both the problems we are getting the derivative of the denomi-
nator in the numerator of the integrand. For a function f(x)

∫

f ′(x)

f(x)
dx = ln|f(x)|+ c

Note that this is the most frequently encountered formulae. You

have to observe whether the derivative of the denominator is there
in the numerator or not!.

Example 5.3.3.
∫

sin10(x) cos(x) dx =

∫

sin10(x) d(sin(x))

put t = sin(x) we get,

=

∫

t10 dt =
t11

11
+ c =

sin11(x)

11
+ c

From the above example we can generalize,
∫

[f(x)]nf ′(x) dx =
[f(x)]n+1

n+ 1

Now consider the following

(exf(x))′ = exf ′(x) + exf(x)

using product rule in differentiation and integrating with respect

to (w.r.t) x on both sides
∫

(exf(x))′ dx =

∫

(exf ′(x) + exf(x)) dx

14



By definition, integration and differentiation are inverse opera-
tions, so we get

exf(x) =

∫

(exf ′(x) + exf(x)) dx

So we are with another important formulae,
∫

ex(f ′(x) + f(x)) dx = exf(x)

Note that this formulae is very easy to prove but very difficult to
use. A problem would be simplied by this formula but then it is

not easily visible that it is being embedded into the problem.

Example 5.3.4.
∫

ex/2 sin(x2 + π
4 ) dx

Put t = x
2 so we get

=
√

2

∫

et(sin(t) + cos(t)) dt =
√

2ex/2 sinx/2

Example 5.3.5.
∫ ex(1+x ln(x))

x solve it yourself.

Example 5.3.6.
∫

(sin(log(x)) + cos(log(x))) ??

Bad way of writing results in bad way of thinking

If
∫

f(x) dx = F (x) then can we say that
∫

f(ax+ b) dx =
F (ax+ b)

a

Yes! that is right and the right way of writing the result. Shall we

prove that ?
put t = ax+ b⇒ dt = adx then we have

∫

f(ax+ b) dx =
1

a

∫

f(t) dt = F (t) + c

But the wrong way this is written or taught is

If
∫

f(x) dx = F (x) then
∫

f(ax+b) dx = F (ax+b)
d
dx (ax+b)

This the mistake

students do when they write or think in the above wrong way, they
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write If
∫

f(x) dx = F (x) then
∫

f(ax2 + bx + c) dx = F (ax2+bx+c
d
dx(ax2+bx+c)

This is absolutely wrong. That second way of writing the integral
when x is replaced by ax+ b is the real culprit. So we should not

forget that the result for linear substitution is got by method of
substitution. We should be away from generalizing results till we

prove them.

(a) List of Nine formulae useful for solving problems

i.
∫

1
x2+a2 dx = 1

a tan−1(xa) + c

ii.
∫

1
x2−a2 dx = 1

2aln|x−ax+a| + c

iii.
∫

1
a2−x2 dx = 1

2aln|a+xa−x| + c (multiply by −1 in equation 2
above.)

iv.
∫

1√
x2+a2

dx = ln|x+
√
x2 + a2| + c

v.
∫

1√
x2−a2

dx = ln|x+
√
x2 − a2| + c

vi.
∫

1√
a2−x2

dx = sin−1(xa) + c

vii.
∫ √

x2 + a2 dx = x
2

√
x2 + a2 + a2

2
ln|x+

√
x2 + a2| + c

viii.
∫ √

x2 − a2 dx = x
2

√
x2 − a2 − a2

2 ln|x+
√
x2 − a2| + c

ix.
∫ √

a2 − x2 dx = x
2

√
a2 − x2 + a2

2 sin−1(xa) + c

(b) To solve the integrals of the form
∫

1

ax2 + bx+ c
dx,

∫

1√
ax2 + bx+ c

dx,

∫

√

ax2 + bx+ c dx

You have to first get ax2 + bx+ c in one of the forms, x2 + a2,
x2−a2 or a2−x2. Then use one of the above formulae to solve

the integral.

(c) To solve the integrals of the form
∫

px+ q

ax2 + bx+ c
dx,

∫

px+ q√
ax2 + bx+ c

dx,

∫

(px+q)
√

ax2 + bx+ c dx

write

px+ q = m
d

dx
(ax2 + bx+ c) + n

evaluate the constants p and q and solve them.
Remember

∫ f ′(x)√
f(x)

dx = 2
√

f(x) and
∫

f ′(x)
√

f(x)dx = 2
3
[f(x)]3/2
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(d) To solve
∫

dx

(px+ q)
√

(ax2 + bx+ c)

the substitution is px + q = 1/t reduces the problem to the

previously discussed forms containing quadratic. Same sub-
stitution works for

∫

dx

(px+ q)k
√

(ax2 + bx+ c)

(a) To solve the integrals of the form
∫

R(sin(x), cos(x)) dx

put

t = tan(x/2) ⇒ dx =
2dt

1 + t2
, sin(x) =

2t

1 + t2
, cos(x) =

1 − t2

1 + t2

and

tan(x) =
2t

1 − t2

(b) IfR(sin(x), cos(x)) = R(− sin(x),− cos(x)) then put t = tan(x)
But before substituting divide numerator and denominator of
the integrand with cos2(x) so that you provide dx with sec2(x)

required.

(c) To solve the integrals of the form
∫

a cos(x) + b sin(x)

p cos(x) + q sin(x)
dx

write
Numerator = m d

dx (denominator) +n(denominator)

(d) To solve the integrals of the form
∫

a cos(x) + b sin(x) + c

p cos(x) + q sin(x) + r
dx

write
Numerator = m d

dx(denominator) +n(denominator)+l

17



5.4 Partial Fractions

We can better learn this by examples

Example 5.4.1.

1

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2

1

(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3

2x2 + 1

(x2 + 1)(x+ 1)
=
Ax+ B

x2 + 1
+

C

x+ 1

3x+ 1

(x2 + 1)2(x+ 1)2
=
A1x+ B1

x2 + 1
+
A2x+ B2

(x2 + 1)2
+

C1

x+ 1
+

C2

(x+ 1)2

Observations from the above examples

(a) All the integrands on the LHS. are proper rational function

(i.e. deg(Numerator function) < deg(Denominator function)
If they are not then you should divide the Numerator with the
denominator and then get the proper rational function.

(b) Nextly the degree of the numerator of every RHS term is one

less than the denominator.

(c) Third if a factor occurs in the denominator with a multiplicity
then that many times the partial fraction corresponding to

that factor is repeated increasing its power by one till that
multiplicity.

18



5.5 Integration by parts

There are two forms,

(a) If f(x) and g(x) are two continuous functions then
∫

f(x)g(x) dx = f(x)

∫

g(x) dx−
∫

(
d

dx
f(x) ·

∫

g(x) dx) dx

Now integration by parts doesn’t work for product of any two

functions (or else would have been a theorem) but works with
few restrictions the functions f and g have to be chosen in such

a way that the process of solving simplifies. For this to happen
we would choose the functions f and g such that it follows
ILATE order.(where ILATE stands for inverse, log, algebraic,

trigonometric and exponential functions respectively).

(b) The other way is we have two functions of x, u and v then

(u · v)′ = udv + vdu

so we can write this as
∫

u dv = uv −
∫

v du

5.6 Important formulae and observations

(a) sin(2θ) = 2 sin(θ) cos(θ) = 2 tan(θ)
1+tan2(θ)

(b) cos(2θ) = cos2(θ) − sin2(θ) = 2 cos2(θ) − 1 = 1 − 2 sin2(θ) =
1−tan2(θ)
1+tan2(θ)

(c) 1 + cos(θ) = 2 cos2(θ/2) and 1 − cos(θ) = 2 sin2(θ/2)

(d) tan(2θ) = 2 tan(θ)
1−tan2(θ)

and tan(π4 ± θ) = 1±tan(θ)
1∓tan(θ)

(e) x2 + 1
x2 = (x+ 1

x)
2 − 2 = (x− 1

x)
2 + 2

d
dx

(x+ 1
x
) = 1 − 1

x2 and d
dx

(x− 1
x
) = 1 + 1

x2

(f) sec2(x)cosec2(x) = sec2(x) + cosec2(x)
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5.7 Important Points

(a) log(x) function is defined only for positive values of x. In
differentiation, we write

d

dx
log(x) =

1

x
here we should write
d

dx
log |x| =

1

x
(How?? Use definition of modulus function)

here x is any real number (positive or negative). So that
by definition of indefinite integration we can write (properly)
∫

1
x
dx = log |x| + c

(b)

5.8 Good Problems

(a)
∫

√

1−x
1+x dx put x = cos(2θ)

(b)
∫

√

x−1
x+1

dx
x2 in this problem we can observe x2 in the denomina-

tor and we know that d
dx(

1
x) = − 1

x2 so we substitute first t = 1
x

and then we have the form of the first problem above.

(c)
∫

√
tan(x)

sin(x) cos(x)
dx see thatR(sin(x), cos(x)) = R(− sin(x),− cos(x))

so the substitution that works is t = tan(x). But before mak-

ing the substitution you should simplify the integrand a bit.
For this substitution divide by sec2(x) both numerator and

denominator and wherever required use sec2(x) = 1 + tan2(x)

(d)
∫

sin(log(x)) dx
Sometimes converting the log(x) function in exponential func-

tion form simplifies the problem. Here put t = log(x) → x =
et → dx = etdt
=

∫

sin(t)(et) dt

This can be simplified with integration by parts.
Another example of this tactics is

∫

sin(log(x)) + cos(log(x)) dx
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and is simplified by converting the integrand from logarithmic
form to exponential form by substituting t = log(x).

(e)
∫

xsin(2 log(x)) dx

Note this problem has 2 log(x) as a parameter for sinx func-
tion, which will cause problem in getting us the integral in

simplified elementary form. So we got to substitute 2 sin(x)
as t. And proceed to get the integral in form of integration by
parts.

(f)
∫

dx
x(x2+1)3

Here we can directly employ partial fraction but if you observe
then you can simplify the integrand more.

Put t = x2 + 1 so the integral becomes,
∫

dt
(t−1)t3 =

∫

A
t−1 dt+

∫

B
t dt+

∫

C
t2 dt+

∫

D
t3 dt

(g) In
∫

(ax+ b)1/n dx and
∫

(ax+bcx+d)
1/n dx

put tn = ax+ b and tn = (ax+bcx+d) respectively.
Solve

∫

x
(2+3x)1/3 dx

put t3 = 2 + 3x

(h)
∫

√

(1−x
1+x)

dx
x .

put t2 = 1−x
1+x ⇒ x = 1−t2

1+t2 differentiate and getting the integral
in variable we can solve the new integral by partial fractions.

Can you make any other substitution try put x = cos(2θ)

(i) For a function f to be integrable,

i. f is continuous.

ii. f is discontinuous.

iii. f is discontinuous at finite number of points in the domain
should work.

iv. f is discontinuous at infinite number of points should work.

v. f f is differential function.

For a function f to be integrable we need that the function f to

be continuous. Now if there are finite number of points where
the function is not continuous then we will break the domain

at this points of discontinuites and then in this broken each
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small domain the function is continuous and hence integrable.
Now if the function is differentiable then it is also continuous.

But if the function is known to be discontinuous at infinite
number of points then the function is not integrable.

(j) Is the function
∫

|x| dx continuous and further is this function

differential also state the reason justifying your assertion.
The function |x| is continuous on the real domain. So the
function is integrable. Now integration smothens every inte-

grable function, that means every integrable function may not
be differentiable but its integral is differentiable. Here

|x| = x⇒
∫

|x| dx =

∫

x dx =
x2

2
, x ≥ 0

|x| = −x⇒
∫

|x| dx =

∫

−x dx = −x
2

2
, x < 0

hence we have that

∫

|x|, dx =

{

x2

2 if x ≥ 0

−x2

2 if x < 0

(k)
∫

x2+1
1+x4 dx,

∫

x2−1
1+x4 dx,

∫

x2

1+x4 dx,
∫

1
1+x4

In this problem we are actually using the following formulae

d(x+
1

x
) = 1 − 1

x2

d(x− 1

x
) = 1 +

1

x2

Then we use

(x2 +
1

x2
) = (x+

1

x
)2 − 2 = (x− 1

x
)2 + 2
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Chapter 6

Mathematics Basics

6.1 Set theory

All branches of mathematics were developing independent of
each other in the beginning but then arised the need to unify all

these branches under common name mathematics. Intially some
mathematicians claimed that logic can be said to be genesis of the
different branches of mathematics studied at that time. But then

Set Theory was being proved to be the genesis of Mathematics.

Definition 6.1.1. Set
A set is a collection of distinct objects.

Definition 6.1.2. Equal Sets
Two sets A and B are called equal sets if

Definition 6.1.3. Subset
A is said to be a subset of the set B if every element in A is
contained in B. Now note here that the sets A and B may also be

equal under this definition.Denoted as A ⊂ B
Proper Subset : A set A is said to be a proper subset of set B

if all the elements of set A are contained in the set B and there is
atleast one element of set B that is not contained by A.

Definition 6.1.4. Null set
A set is said to be null if it contains no element, denoted as φ.
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Definition 6.1.5. Disjoint set
Two sets A and B are said to be disjoint if no element of set A is

in set B.

VENN DIAGRAMS

Operations on sets
The operations working on sets are union,intersection,complement.

(a) Union: Union of two sets A and B is the set of all elements
from set A and set B.

(b) Intersection: Intersection of two sets A and B is the set

containing common elements of A and B.

(c) Complement:Complement of a set A is the set of elements
which are not in A( then where are these elements from) but

in the U universal set.

Difference of two sets: Difference denoted as A − B is the set

of all elements of A not in B.(It is like removing all the elements
of B from set A).

A− B = A ∩ Bc

Properties of these operations on Sets

These properties are called commutativity.( you can see symmetry
in the venn diagrams the first two properties.)

(a) A ∪B = B ∪A
(b) A ∩B = B ∩A
(c) A−B 6= B − A

These property is called distributive property.

(a) (A ∪B) ∪ C = A ∪ (B ∪ C)

(b) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

These property is called Associative property.

(a) (A ∪B) ∪ C = A ∪ (B ∪ C)
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(b) (A ∩B) ∩ C = A ∩ (B ∩ C)

Demorgan’s Law (the first two formulae are having complement

with respect to the Universal set. In the next two the complement
is with respect to the set X.

(a) (A ∪B)c = Ac ∩Bc

(b) (A ∩B)c = Ac ∪Bc

(c) X − (A ∪B) = (X −A) ∩ (X −B)

(d) X − (A ∩B) = (X −A) ∪ (X −B)

Are these statements true, Check?

(a) (A− B) ∪ (B − A) = (A ∪B) − (A ∩B)

(b) (A−B) = A− (A∩B) what is (B −A) Is it symmetric. Flip

the venn diagram once and check??

SET OF NUMBERS

(a) Natural Numbers(N):A set {1, 2, 3, ...} is called the set of Nat-
ural numbers.

(b) Whole Numbers : A set {0, 1, 2, 3, ...} is called the set of Whole

numbers.

(c) Integers(Z or I): A set {...− 2,−1, 0, 1, 2, ...} is called the set

of Integers.

(d) Rational Numbers(Q): A set {pq : p, qεZ and q 6= 0} is called
the set of Rational numbers.

(e) Irrational Numbers : A set of numbers which are not Rational.

(f) Real Numbers(R): A set of union of the Rational and Irra-

tional numbers taken together.

(g) Complex Numbers(C): A set {a+ ib : a, bεR and i =
√
−1} is

called set of complex numbers.

Therefore we have N ⊂ W ⊂ Z ⊂ Q ⊂ R ⊂ C. Note R =
Irrational ∪Rational Can we say {Irrationalnumbers} ⊂ R?
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Definition 6.1.6. For decimal form of Real Numbers.
When in decimal form, Rational and Irrational numbers are dif-

fered in the way that, rational numbers are non-terminating and
recurring while Irrational numbers are non-terminating and non-

recurring.

Modulus or Absolute value
Now we would explore this as a value but in calculus we would see
this as a function. Defined as

|x| =

{

x if x ≥ 0
−x if x < 0

The basic confusion of students in the definition of the modulus

function is that the negative sign given to x when x < 0. This sign
is to make the negative number put inside the modulus function
to a positive number with the same value.Think!!

Example 6.1.7. Therefore |2.3| = 2.3, | − 2| = 2. So we see that
the modulus or absolute function chops of the negative sign.

Properties of modulus value

(a) |a| ≥ 0

(b) |a| ≥ a

(c) |a · b| = |a| · |b|
(d) |ab | = |a|

|b|

(e) |a+ b| ≤ |a| + |b|
(f) |a− b| ≥ ||a| − |b||
(g) If |x| ≤ a⇒ −a ≤ x ≤ a

(h) If |x| ≥ a⇒ x ≤ −a or x ≥ a

Order properties of Real numbers

(a) If a < b and b < c⇒ a < c

(b) If a < b and c < b⇒ a < c Is this true??

26



(c) If a < b and c ∈ R ⇒ a+ c < b+ c

(d) If a < b⇒
{

ac < bc if c > 0

ac > bc if c < 0

(e) If a < b⇒
{

1
a >

1
b if ab > 0

1
a <

1
b if ab < 0

(f) For 0 < |a| < 1 ⇒ 0 < ... < a6 < a4 < a2 < 1

(g) For |a| > 1 ⇒ 1 > a2 > a4 > a6... > 0

(h) If a · b = 0 ⇒ a = 0 or b = 0
Can we also say similarly that If a · b = 1 ⇒ a = 1 or b = 1???

(i) If a2 + b2 ⇒ a = 0 and b = 0 (Note that ’and’ what is the

need?? both have to be zero simultaneously)

6.2 Logarithms

Definition 6.2.1. lna x is a function whose value is defined for

x > 0,a > 0 and a 6= 1
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Chapter 7

Definite Integration

7.1 Function Symmetry, Translation and Re-

flection

Here we will see the behaviour of the function f(x) in the coor-

dinate axes.

(a) The graph of the function f(x− a) is obtained by moving the

graph of the function f(x) along the positive x-axis.

(b) The graph of the function f(x+ a) is obtained by moving the
graph of the function f(x) along the negative x-axis.

(c) The graph of the function f(x)+a can be obtained by moving

the graph of the function f(x) along the positive y-axis.

(d) The graph of the function f(x)−a can be obtained by moving
the graph of the function f(x) along the negative y-axis.

Function elongation or contraction

(a) For α > 1, The graph of the function f(αx) is obtained by

contracting the graph of f(x) by α factor along the x-axis.

(b) For 0 < α < 1, The graph of the function f(αx) is obtained
by elongating the graph of f(x) by α factor along the x-axis.

(c) For α > 1, The graph of the function αf(x) is obtained by

elongating the graph of f(x) by α factor along the y-axis.

(d) For 0 < α < 1, The graph of the function αf(x) is obtained
by contracting the graph of f(x) by α factor along the y-axis.
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Function Inversion about X-axis and Y-axis

(a) The graph of the function f(−x) is the inverted graph of f(x)
about the y-axis.

(b) The graph of the function −f(x) is the inverted graph of f(x)
about the x-axis.

Example 7.1.1. |x−1
x+1 | = x−1

x+1

Note |x| = x only if x > 0. So here in this problem we need x 6= −1

for the problem to exist and x−1
x+1 > 0

x−1
x+1 > 0 ⇒ (x − 1)(x + 1) > 0 ⇒ x > 1 or x < −1 So it the
solution to the equation is (−∞,−1) ∪ (1,∞).

Example 7.1.2. |x2 − 5x + 6| = −(x2 − 5x + 6) Try this. A

graphical thinking is good.

Example 7.1.3.
∫ x

0

√
a2 − x2 dx can you think of the solution in

a graphical sense. Hint: The integrand
√
a2 − x2 is a part of the

circle.

Even And Odd functions and Symmetry

Definition 7.1.4. Even function
A function f(x) is called as even function if it satisfies f(−x) =
f(x).(that is if the negative sign is eaten away by the function

given along with the independent variable.)

Example 7.1.5. cos(x), ex + e−x, x2

Definition 7.1.6. Odd function

A function f(x) is called as odd function if it satisfies f(−x) =
−f(x)(that is the function is not able to swallow the negative sign

so it throws out.)

Example 7.1.7. sin(x), ex − e−x, x3

NOTE:

(a) Now note that the even functions are symmetric about the

y-axis and Odd function are symmetric about the origin
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(b) The modulus function actually reflects the part of the graph
below the x axis under the xaxis acting as mirror. We will be

using this knowlegde to solve problems in definite integration.

Definition 7.1.8. Definite Integration

If f(x) is integrable and has the antiderivative as F (x) that is
F ′(x) = f(x) in [a, b] then the definite integral with the lower limit

as a and upper limit as b is defined as
∫ b

a f(x) dx = F (b) − F (a)

called the Newton-Leibnitz formula
NOTE: Newton Leibnitz formula to compute the definite integral
of a continuous function on [a, b] only if,

F ′(x) = f(x) is fulfilled in the whole interval [a, b],i.e. the an-
tiderivative must be a continuous function on the whole interval

[a, b]. A discontinuous anti-derivative would lead to wrong result.

Example 7.1.9. Evaluate
∫ 1

−1
d
dx(tan−1( 1

x)) dx
∫ 1

−1 d(tan−1( 1
x
)) = tan−1(1) − tan−1(−1) = −π

4
− π

4
= π

2

But note that the function tan−1( 1
x) which is the anti-derivative

of the integrand above is not continuous on [−1, 1]. But we may

circumvent this shortcoming of the anti-derivative tan−1( 1
x) as fol-

lows,
∫ 1

−1 d(tan−1( 1
x)) =

∫ 0

−1 d(tan−1( 1
x) +

∫ 1

0 d(tan−1( 1
x))

Now note that on [−1, 0) and (0, 1] the function tan−1( 1
x) is con-

tinuous. Hence we get,
∫ 0

−1 d(tan−1( 1
x)) = lima→0−

∫ a

−1 d(tan−1( 1
x)) = lima→0− tan−1(1

a) −
tan−1(−1) = −π

2
− (−π

4
) = −π

4

And

∫ 1

0 d(tan−1( 1
x)) = lima→0+

∫ 1

a d(tan−1( 1
x)) = lima→0+ tan−1(1) −

tan−1 1
a) = π

4 − (π2 ) = −π
4

So finally the solution is −π
2 .

Another way of solving this problem,
∫ 1

−1
d
dx

(tan−1( 1
x
)) dx =

∫ 1

−1
1

1+ 1

x2

−1
x2 dx = −

∫ 1

−1
1

1+x2 dx = −(tan−1(1)−
tan−1(−1) = −(π

4
− (−π

4
)) = −π

2
Here we have got another anti-

derivative of the integrand d
dx(tan−1( 1

x)) that is − tan−1(x) which
is continuous on [−1, 1].
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Example 7.1.10. Another problem with the same idea is
∫

√
3

0
1

1+x2 dx
Now see that 1

2
tan−1 2x

1−x2 is the antiderivative of 1
1+x2 but it is not

continuous at 1 so we cant use leibnitz rule but then what we can
do is break down the interval into two intervals [0, 1) and (1,

√
2].

7.2 Problems.

(a) Show that
∫ 2π

0 sin3 x dx = 0

(b) Show that
∫ 1

−1 e
−x2

dx = 2
∫ 1

0 e
−x2

dx

(c) Show that
∫ π

0 sinx dx = 2 and remember this!

0 \pi

Figure 7.1: area under sin(x) function in [0.π].

(d) Find
∫ 3

0 |1 − x| dx.

(e) Solve
∫

√
3

0
1

1+x2 dx

(f)

7.3 Properties of Definite Integrals

(a) In definite the variable of integration is the dummy variable

i.e.
∫ b

a f(x) dx =
∫ b

a f(t) dt

(b) Reversing the limits:
∫ b

a f(x) dx = −
∫ a

b f(x) dx
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(c) If f(x) ≤ φ(x) for a ≤ x ≤ b, then

∫ b

a

f(x) dx ≤
∫ b

a

φ(x) dx

(d) A special case is, if f(x) ≥ 0 then

∫ b

a

f(x) dx ≥ 0

Example 7.3.1. 0 < x2 < x < 1 then

0 ≤
∫ 1

0

x2 dx ≤
∫ 1

0

x dx ≤ 1

Note whether there should be ≤ or < above.

(e)
∫ b

a f(x) dx =
∫ b

a f(a+ b− x) dx

Example 7.3.2.

∫ 2

1

|x| dx =

∫ 2

1

|3 − x| dx

(f) Special case of the above formula
∫ a

0 f(x) dx =
∫ a

0 f(a− x) dx

(g) From above, |
∫ b

a f(x) dx| ≤
∫ b

a |f(x) dx| use that −|x| ≤ x ≤
|x|
Example 7.3.3. The function f(x) may be below x-axis also.

So the left hand side gives the area under curve which would
include the negative area too. So the total area may be less

than the absolute..

|
∫ 1

−1

x dx| ≤
∫ 1

−1

|x| dx

(h) Note here that the point c might be a point of discontinuity.

This is called piece-wise integration. So by integrating in small
pieces keeping the point of discontinuity we are obeying the

definition of Definite Integration. Also note that let the point
c be such that a < c < b since we might know how the function
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behaves in this interval but sometimes in solving problems we
might for sake of simplifying the problem take the point c

outside the interval (a, b) which might result the inclusion of
a point of discontinuity which might lie in the interval (b,c).

So beware..!
∫ b

a f(x) dx =
∫ c

a f(x) dx+
∫ b

c f(x) dx

(i)
∫ a

0 f(x) dx =
∫ a/2

0 f(x) dx+
∫ a/2

0 f(a− x) dx
Can be got by first using the piece-wise integration in the

interval (0, a/2) and (a/2, a). Then use the substitution x =
a − t and using the reversing the integral limits the second

property above. This kind of simplification is useful if the
function f(x) is symmetric about x = a/2 line giving the

below short way of seeing.

∫ a

0

f(x) dx =

{

2
∫ a/2

0 f(x) dx if f(a− x) = f(x)

0 if f(a− x) = −f(x)

Example 7.3.4.
∫ π

0 sin(x) dx and
∫ π

0 cos(x) dx

Can be solved since the function sin(x) is behaving as f(x) =
f(a− x) and in the second problem cos(x) behaves as f(x) =

−f(a− x)

(j) If the function f(x) repeats itself after period a/2 i.e. f(x) =

f(a/2 + x) then the following form might be useful.

∫ a

0

f(x) dx =

∫ a/2

0

f(x) dx+

∫ a/2

0

f(a/2 + x) dx

use the piece-wise integration and then substitute x = a/2+ t.

Example 7.3.5.
∫ 2π

0 sin(x) dx
Here in the first problem the function cos(x) behaves as f(x) =

f(π + x) and second problem f(x) = −f(π + x).

(k)
∫ a

−a
f(x) dx =

{

0 if the f(x) is odd

2
∫ a

0 f(x) dx if the f(x) is even
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(l) m(b − a) ≤
∫ b

a f(x) dx ≤ M(b − a) where m and M are the

least and the greatest values of the function f(x)

(m) Generalised mean value theorem
∫ b

a f(x)φ(x) dx = f(ξ)
∫ b

a φ(x) dx where a < ξ < b

(n) Leibnitz’s rule for the differentiation under the integral sign

If the function φ(x) and ψ(x) are defined on [a, b] and differ-
entiable at x ∈ (a, b) and f(t) is continuous on [φ(a), φ(b)],

then

d

dx
(

∫ ψ(x)

φ(x)

f(t) dt) =
d

dx
{ψ(x)}f(ψ(x))− d

dx
{φ(x)}f(φ(x))

Note: Here in Leibnitz’s rule note that the integrand function
is a function of t alone and doesn’t contain x or functions of

x, φ(x) and ψ(x).

Example 7.3.6. On [0, π2 ], prove that

∫ sin2(x)

0

sin−1(
√
t) dt+

∫ cos2 x

0

cos−1(
√
t) dt =

π

4

Example 7.3.7. Prove that if f(x) = 1
2

∫ x

0 (x− t)2g(t) dt then
f ′(x) = x

∫ x

0 g(t) dt−
∫ x

0 tg(t) dt

Note that above in the leibnitz rule the integrand is a function
of the dummy variable alone. That point is to be noted while

solving this problem as here the integrand is a function of the
variable x along with the dummy variable.

Example 7.3.8. limh→0

∫ 2+h

2

√
t2+2
h

dt

limx→1

∫ x

1

sin πt
2

(x−1)(t2+1) dt

Both the problems can be solved if you are able to see that
the limit problem is of the form 0

0 form. And you can apply
L’Hospital rule using the Leibnitz rule.

(o) Schwarz-Bunyakovsky inequality

If f(x) and g(x) are integrable on (a, b) then we have

|
∫ b

a

f(x)g(x) dx| ≤

√

∫ b

a

f 2(x) dx

∫ b

a

g2(x) dx
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(p) Note the following method with the help of a problem.

Example 7.3.9. Evaluate F (α) =
∫ 1

0
xα−1
ln(x) dx, where α 6= −1

is a parameter.
First differentiate F (α) w.r.t α the differentiation can be car-

ried inside the integral sign differentiate xα to get xα ln(x)
which will simplify to give us.
F ′(α) = 1

α+1
⇒ F (α) = ln(α+ 1) hence the result.

Now this result is used to prove

∫ 1

0

x− 1

ln(x)
dx = ln 2

.

7.4 Area Bounded by curves

What is the difference between the below two problems,

(a) What is area bounded by the curves f(x) = sin(x) and x-axis
and x = 0,x = 2π lines.

(b) Evaluate
∫ 2π

0 sin(x) dx

Both the problems are different.The first problem has a non-zero
area. The value of the second problem is zero.The convention

which we would use to solve the area problem is by drawing an
arrow in the region whose area need to be calculated. The arrow
moves laterally to give the lower and upper limit of x. We cal the

function through which the arrow enters the required region as the
initial function and the function through which it comes out as

the final function.The direction of the arrow along the positive
y-axis is considered to be positive and the lateral movement of the

arrow long the positive x-axis is considered to be positive. Now if
both this movements are there in a figure then the area evaluated
by that integral is positive and other posibilities take place.

For example see the first figure. Here in [0, π] the arrow enter the
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region through y = 0 function and comes out through y = sin(x)
function. So we call y = 0 the initial function and the y = sin(x)

the final function. And to calculate the area of this much region
using definite integrals we write

∫ π

0 (sin(x) − 0) dx,

i.e
∫ π

0 (sin(x)) dx

Now the remaining area got to be calculated as
∫ 2π

π (0− sin(x)) dx

since now the function have gone upside down so to get the area
positive by the arrow convention we got to change the direction of

the arrow to upwards.

π
2π

π
2π

Figure 7.2: The first graph is to the first problem and the second for the second
problem, Note the arrow direction in both the graphs.

YOU HAVE TO SOLVE PROBLEMS OF THE TYPE..PAGE

190 PROBLEM 71 I.E PROBLEMS INVOLVING IN-
VERSE TRIGONOMETRIC FUNCTION.OK
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Chapter 8

Differential Equations

8.1 Introduction

An equation involving one dependent variable and its derivatives
with respect to one or more independent variables is called a dif-
ferential equations.

If there is only one independent variable then the D.E is called
an ordinary differential equation or if there are more than one

independent variables then the D.E is called partial differential
equation.

Example 8.1.1. 1.dydx = x+ 5
2.(y′′)2 + (y′)3 + 3y = x2

3.∂
2z
∂x2 = z + x∂z∂y

Here above the first two are examples of ordinary D.E and the

third is of partial D.E.

What is the need to learn Methods to solve and generate D.E’s ?

In any natural process, the variables involved and their rates of
change are connected with one another by means of the basic sci-

entific principles that govern the process. When this connection is
expressed in mathematical symbols, the result is often a D.E.

Example 8.1.2. Suppose a body of mass m falling freely under

gravitational force alone. In this case the only force acting on it is
mg, where g is the acceleration due to gravity. If y is the distance
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down to the body from some fixed height, then its acceleration is
d2y
dt2 , and using F = ma we get

m
d2y

dt2
= mg

or
d2y

dt2
= g

So we got a D.E.

8.2 Problem solving

There are two sort of problems involved in Problem solving in D.E.
1. Finding the solution(primitive) to a given D.E.

2. Generating the D.E given the primitive.
Before investigating it and the ways to do this, we need to see first
the order and degree of a differential equation.

Definition 8.2.1. order of a derivative

The number of times the function is differentiated is called the
order of the derivative.

For e.g. dy
dx is the first order derivative of y w.r.t x.

And d3y
dx3 is the third order derivative of y w.r.t x.

Definition 8.2.2. Order of a D.E

Order of a D.E is defined as the order of the highest order deriva-
tive occuring in the D.E.

Definition 8.2.3. Degree of a D.E
The highest power on the highest order derivative is defined as the

degree of the D.E.

Example 8.2.4. (a)

d2y

dx2
+ (

d2y

dx2
)3 + 2y = 0

Here this D.E is of degree 3 since the highest power on the
highest order derivative is 3.
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(b)

y = x
dy

dx
+

√

1 + (
dy

dx
)2

On removing the radicals we get

y2 − 2xy
dy

dx
+ x2(

dy

dx
)2 = 1 + (

dy

dx
)2

which has the highest power on the highest order derivative(2)
as 2.

Note that the degree is defined only when the D.E is a polynomial

in derivatives of the dependent variables. see the next example

Example 8.2.5. The degree of the D.E

d3y

dx3
+ 2(

dy

dx
)3 = x log(

d2y

dx2
)

For this problem the degree is not defined since its not a polynomial
in derivatives of the dependent variable/s.

Note: You should take care of two things while calculating degree

of a D.E
1. Get rid of all the denominators in the D.E.

2. Get rid of all the radicals in the differential equations.

Example 8.2.6. Find the degree and order of the given D.E

y
dy
dx

= x
dy

dx
+ (1 + (

dy

dx
)2)2/3

(1 + (
dy

dx
)2)3/2 =

d2y

dx2

Definition 8.2.7. Linear and Non-linear D.E

A D.E which is linear w.r.t the dependent variable and its deriva-
tives. i.e. our D.E. should be linear( of degree one) in the the

variables y, dy
dx
, d

2y
dx2 ,

d3y
dx3 , ....
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So any linear D.E is of the form

a0y
(n) + a1y

(n−1) + ...+ an−1y
(1) + any = pn

where all ai, 0 ≤ i ≤ n are functions of x.

Example 8.2.8. Are these problems linear or non-linear.
1. x2 dy

dx + yx3 = d3y
dx3 is a linear D.E.

2. y(dy
dx

) = x2 is not a linear D.E.

Formation of a D.E
You are given an equation relating the independent variable and

the dependent variable with a set of n independent arbitrary con-
stants. Then You follow the steps below

1. Differentiate the equation w.r.t to the independent variable as
many times as the number of the arbitrary constants(n) in the

equation.
2. By this you get n equations with those n arbitrary constants.

Now solve this equations to eliminate these n unknown constants.
What are these arbitrary constants in this given equation from
which you are going to find the D.E. ?

This arbitrary constants are the parameters which give you a fam-
ily of curves which all have the same D.E.

For e.g. x2+y2 = c2 here the arbitrary constant c > 0 will give rise
to a family of circles which all would be having the centre as (0, 0)

and radius a. So the differential equation of this family is the same.

NOTE: The order of a D.E is same as the number of indepen-

dent arbitrary constants in the solution (primitive) of the D.E.

see the next example below.

Example 8.2.9. Find the order of the D.E

(a)
y = cx+

√
cx2
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Here note that the arbitrary constants are one and the same.i.e.
there is only one arbitrary constant c. So the order is 1. Can

you find the D.E of this equation.

(b)
y = a sin(x) + b cos(x+ c)

Now what is the order of the corresponding D.E here?? It is

2 since we can solve it to get two independent arbitrary con-
stants as..

y = (a−b sin(c)) sin(x)+(b cos(c) cos(x)) = k1 sin(x)+k2 cos(x).

Definition 8.2.10. Particular Solution and General Solu-
tion of a D.E

Particular solution of a D.E is defined as the solution without any
arbitrary constants i.e. those arbitrary constants are evaluated by
given extra condition.

While General solution is the solution to a D.E containing those
arbitrary constants.

Since the solution of a D.E is a family of curves ( arbitrary con-
stants shows that its a family) the particular solution gives only

a particular curve satisfying the extra condition given along with
the D.E. The general solution is the whole family of curves.

8.3 Types of problems

We will be seeing the various methods to solve first order, first
degree D.E of specific forms:

(a) Variable separable

(b) D.Equations of the form dy
dx = f(ax+ by+ c) ( note here f is a

function of linear term ax + by + c which finally is converted

to variable separable form).

(c) D.E of the form containing xdy − ydx or xdx+ ydy

(d) Homogenous D.E.
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(e) Non-homogenous D.E reducible to Homogenous form. dy
dx =

a1x+b1y+c1
a2x+b2y+c2

which has two subparts

1. a1

a2
= b1

b2

2. a1

a2
6= b1

b2

(f) Linear D.E. of the form dy
dx + Py = Q where P and Q are

functions of x.

(g) Bernoulli’s equation, which has the form: dy
dx + Py = Qyn

Let us see these methods in detail one by one...
Variable Separable form:
Any D.E of the form M(x, y)dx+N(x, y)dy = 0 if you are able to

write in the form f(x)dx = g(y)dy then just integrating on both
the sides gives you the general solution of the differential equation,

then it is said to be in variable separable form.

Example 8.3.1. Solve sec2(x) tan(y) dx+ sec2(y) tan(x) dy = 0
The problem is in variable separable form. So we have on rear-

rangement,
sec2(x)
tan(x) + sec2(y)

tan(y) = 0
∫ sec2(x)

tan(x) dx+
∫ sec2(y)

tan(y) dy = ln(c) ,c > 0

ln | tan(x) tan(y)| = ln(c)
⇒ | tan(x) tan(y)| = c

Example 8.3.2. Solve dy
dx = sin(x+ y) + sin(x− y)

As you see it doesn’t seem to be in variable separable form but it
is.

i.e dy
dx = 2 sin(x) cos(y)

i.e
∫

dy
cos(y) = 2

∫

sin(x) dx

i.e ln | sec(y) + tan(y)| = −2 cos(x) + c

Note that in the problems that we are going to do hence on, our

aim would be reduce that particular form D.E to variable separable
form.

D.E Reducible to variable separable forms
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(a) A differential equation of the form dy
dx = f(ax+ by + c) can be

solved by transformation t = ax+ by + c

Example 8.3.3. Solve dy
dx = ex+y + 1

This problem is not in variable separable form. But we see

that the function on the R.H.S is a function of x+ y.
Put x+ y = t ⇒ 1 + dy

dx = dt
dx So using this we get the D.E in

(x, t) as

dt

dx
− 1 = et + 1

Now the problem is in variable separable form.

(b) A differential equation of the form dy
dx = a1x+b1y+c1

a2x+b2y+c2
and which

has a1

a2
= b1

b2
Then use the transformation t = a1x + b1y + c1 or t = a2x +
b2y + c3 whichever is simpler. This transforms the given dif-
ferential equation to variable separable D.E in (x, t) solve and

again resubstitute to get the solution to the original problem
in (x, y). Note here that this form is a special case of

the first form done in this list.

Example 8.3.4. Puting an example is pending.

(c) The next we are going to discuss a Homogenous D.E, but

before that we need to discuss homogenous functions.

Definition 8.3.5. Homogenous functions A function f(x, y)
is a homogenous function ⇔ f(tx, ty) = tnf(x, y) where t is

a variable, then n is the degree of this homogenous function
f(x, y).

Example 8.3.6. i. f(x, y) = x sin(y) + y sin(x)

This function is not a homogenous function since the vari-
able t won’t be able to come out of the sin function.

ii. f(x, y) = x sin(x/y) + y sin(y/x)
This function is a homogenous function of degree 1 since
the t inside the sin function wont have any t term but there
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would be one t term coming from the x and y term outside
the trigonometric functions.

Now we turn to the definition of the homogenous D.E.

Definition 8.3.7. A D.E of the formM(x, y)dx+N(x, y)dy =

0 or dy
dx

= −M(x,y)
N(x,y)

where M(x, y) and N(x, y) are homoge-

nous functions of same degree is defined as a Homogenous
D.E (H.D.E).

Example 8.3.8. i. (x2 + y2)dx+ xydy = 0
Is a homogenous D.E. since both the function x2 + y2 and

xy are homogenous functions of same degree i.e 2. More-
over if we write this D.E in another form

ii. dy
dx = −x2+y2

xy then the function −x2+y2

xy is a homogenous

function of degree Zero.

The method to solve a H.D.E is to use the substitution y =
vx ⇒ dy

dx = v + xdvdx . And on making this substitution we get
the final D.E in variable separable form in (v, x) variables.

Example 8.3.9.

(1 + ex/y)dx+ ex/y(1 − x

y
)dy = 0

This problem is a homogenous D.E. Since both the functions
are homogenous functions of degree 0.But then if we make

use of y = vx transformation then the new D.E is bit compli-
cated,(try that). But what if we form the new D.E by using
the transformation x = vy this would really simplify the new

D.E. Let us work that.

dx

dy
= −e

x/y(1 − x/y)

(1 + ex/y)

Note here that we have written the D.E in dx
dy

form. put

x = vy ⇒ dx
dy = v + y dvdy

v + y
dv

dy
=
ev(v − 1)

(1 + ev)

44



y
dv

dy
= −v + ev

1 + ev
∫

1 + ev

v + ev
dv = −

∫

dy

y
+ c

ln |v + ev| + ln |y| = ln c′

(x/y + ex/y)y = c′

This is the solution to the given D.E.

Note here that the solution to the D.E is a function in

implicit form. So whether you have its D.E in dy
dx or dx

dy

doesnt matter, since we assume that inverse function

exists.

(d) A D.E of the form dy
dx = a1x+b1y+c1

a2x+b2y+c2
where a1

a2
6= b1

b2
is the next

type.
Now this D.E is simplified if the constants terms are somehow
removed from the D.E. i.e. the terms c1,c2 so that the problem

becomes a homogenous D.E. The best way is to use a transfor-
mation such that in the new space our D.E is a Homogenous

D.E. Let me tell you how.
Substitute x = X+h and y = Y +h⇒ dx = dX and dy = dY

where (h, k) is the point where the coordinate system is being
moved. We needed c1 and c2 to be zero in the new system we
can solve the equation a1h+b1k+c1 = 0 and a2h+b2k+c2 = 0

to make it zero from solving this equations we know now the
point where the origin is being moved i.e (h, k).

Example 8.3.10.
dy

dx
= −x− 1

y − 1

This problem is a variable separable problem. But is of great
help if we can also see that it is also in the above form.(i.e.
dy
dx = − (1)x+(0)y+(−1)

(0)x+(1)y+(−1)).
Now if you solve this problem as a variable separable problem

then you get,

∫

y − 1 dy +

∫

x− 1 dx = c
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(y − 1)2 + (x− 1)2 = 2c

This is equation of the family of the circles centered at (1, 1)
and radius

√
2c.

Now seeing the same problem with the above type perspec-

tive. We will substitute x = X + 1 and y = Y + 1 which
actually shifts the origin to (1, 1) such that now the family of

solutions has its center as (0, 0). So the D.E has also become
homogenous.That’s the trick in this method.We use the trans-

formation that simplifies the D.E.
The overall process of solving this kind of D.E is as follows

dy

dx
=
a1x+ b1y + c1
a2x+ b2y + c2

, where
a1

a2
6= b1
b2

⇒ Homogenous D.E ⇒ Variable separable

Linear Differential Equation of First Order
A D.E of the form

dy

dx
+ yP (x) = Q(x)

We see that,

d

dx
(y · e

∫

P dx) = y · e
∫

P dx d

dx
(

∫

P dx) + e
∫

P dxdy

dx
= Q · e

∫

P dx

Therefore the final solution is,

y · e
∫

P dx =

∫

Q · e
∫

P dx dx+ c

8.4 Some short-cut formulae

(a) d( y
x
) = xdy−ydx

x2

(b) d(xy) = xdy + ydx

(c) d(xy ) = ydx−xdy
y2

(d) d(log( yx) = xdy−ydx
xy

(e) d(tan−1(yx)) = xdy−ydx
x2+y2

(f) d(tan−1(xy )) = ydx−xdy
x2+y2
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(g) d(1
2 log(x2 + y2)) = xdx+ydy

x2+y2

(h) 1
2d(x

2 + y2) = xdx+ ydy

(i) d(log(xy )) = ydx−xdy
xy

(j) d(log(x+ y) = dx+dy
x+y

(k) d(log(xy)) = xdy+ydx
xy

Some D.E can be made exact to use the above formulae by multi-

plying by a factor called integrating factor.

(a) Integrating factor of a homogeneous D.E.
Mdx+Ndy = 0 is 1

Mx+Ny
where Mx+Ny 6= 0

(b) Integrating factor of D.E of the form

Mydx+Nxdy = 0 is 1
Mx−Ny where Mx−Ny 6= 0
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Chapter 9

Trigonometry
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Chapter 10

Theory of Equations

10.1 Roots of Quadratic Equations

Definition 10.1.1. A Quadratic equation is defined as ax2 + bx+
c = 0 where a, b, c ∈ R and a 6= 0.

Let α, β be the roots of the given quadratic equation. Then

α + β = − b
a

and αβ =
c

a

And the roots are x = −b±
√
b2−4ac

2a

10.2 Generation of new equation

This is true for any equation. If we have an equation f(x) = 0 with

the root α then if we need a new equation whose root φ is related to
α as α = g(φ) then we get the new equation as f(g(φ)) = 0. This

new idea can be extended to quadratic equations also.(provided
that function g(x) should be bijective Think why??)
This concept can be used to form new quadratic equations if the

new roots related to α and β are given.
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10.3 Graphical study of properties of the quadratic

expression

Let f(x) = ax2 + bx + c then we discuss the key factors deciding
the study of quadratic equations and inequalities.

1. Concavity is decided by the sign of the a
2. Intersection of the quadratic (which is a parabola think! why

a > 0

a < 0

   

Figure 10.1: Convavity depends on sign of a

this is always upwards or downwards concavity) curve with the
x-axis is decided by the sign of the discriminant ∆ = b2 − 4ac

(a) If ∆ > 0 then the curve will intersect x-axis in exactly two

points.

(b) If ∆ = 0 then the curve will touch the x-axis in exactly one
point.

(c) If ∆ < 0 then the curve will not intersect the x-axis

(d)
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Chapter 11

Inequalities

11.1 Basic Inequalities

If a, b, c are real numbers then

(a) If a < b⇒ a+ c < b+ c (note its true whether c > 0 or c < 0

or c = 0

(b) If a < b⇒ ac < bc for c > 0 or ac > bc for c < 0.

(c) If a < b and p, q > 0 then ap < bp and a1/q < b1/q.

(d) If 0 < a < 1 ⇒ 0 < · · · < a3 < a2 < a < 1

and if a > 1 ⇒ 1 < a < a2 < · · · < an − 1 < · · · <∞.

11.2 A.M-G.M inequality

There is this heavily used inequality called the A.M-G.M in-
equality If a, b > 0 then a+b

2 ≥
√
ab

It can also be generalised for n positive real numbers {a1, a2, ..., an}
then we have

∑

ai

n ≥ (Πai)
1/n

NOTE A.M-G.M inequality works only for positive real values.

And A.M-G.M inequality will be useful when you see symmetry in
the question since the inequality is also symmetrical or cyclic..
Can you prove the A.M-G.M inequality with two methods.

Hint: Method-1 is to use (a− b)2 ≥ 0 and Method-2 is to use
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11.3 Symmetry

The maximum of minimum value (which ever exists) of an ex-

pression is attained only when all the terms in the symmetrical
expression are equal.

Example 11.3.1. The minimum value of the expression (a − b)2

exists and is 0 when a = b.

Refer Hall and Knight.
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Chapter 12

Difficult General Problems.

12.1 Logarithms problems (inequations and equa-

tions)

(a) What is the difference between a equation and a inequation.(think
graphically.)

(b) (1
5)

2x+1

1−x > (1
5)

−3

solution: (1, 4)

(c) (1
3)

|x+2|
2−|x| > 9

solution: (2, 6)

(d)
√

9x + 3x − 2 ≥ 9 − 3x

solution: (2,+∞)

(e) 2x + 2|x| ≥ 2
√

2
solution:(−∞, log2(

√
2 − 1)] ∪ (1/2,+∞)

(f) (1/2)log2(x
2−1) > 1

solution: (−
√

2,−1) ∪ (1,
√

2)

(g) |x− 1|log2 x−logx2

= |x− 1|3

(h) Find the minimum value of the expression | loga b+ logb a|

12.2 Quadratic equations

(a) For what values of a ∈ R does the equation ax2 + x + a −
1 = 0 possess two distinct real roots x1 and x2 satisfying the
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inequality | 1
x1

− 1
x2
| > 1? Hint: the equation is f(x) = 0 then

get the equation f( 1
x
) with the roots 1

x
now the given condition

above is |x1 − x2| > 1 ..solve!!

(b)

12.3 Drawing the graphs

(a) Draw the graphs of y = x2 and y = x3 in the same coordinate
system.(i.e. together) what do u learn from it ?

(b) Draw loga(x) and ax for a > 1 and 0 < a < 1

(c) f(x) = x+ sin(x) and g(x) = x− sin(x)

(d) f(x) = x+ 1
x and g(x) = x− 1

x

(e) |x| + |y| = 1 what region does this graph bound ?

(f) Draw the graph of the function f(x) = x|x| where x ∈ R.
Is this function Differentiable at x = 0 or continuous at x =

0??

12.4 Continuity

(a) The function f(x) = 1
x for x ∈ R− {0} is continuous function

or not ? Why ?
solution: The function is not defined at x = 0. But since

the point x = 0 removed from the domain of the function we
can always draw a tangent at any point in its domain. So the

function is differentiable at every point and a differentiable
function is continous at every point of the function domain.

So this function is continous. We might be misguided by the
lame definition that(which is also right) if we are able to draw

the graph of the function without raising the pencil then that
function is continuous.

(b)
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12.5 Probability

(a) If the probability of success on a single experiment with n

outcomes is 1/n.
1. show that the probability that, in m trials there is no success

is (1 − 1
n)
m.

2. show that if m = n ln 2 then limn→∞(1 − 1/n)m = 1
2 .

(b) My dad heard this story on the radio. At Duke University,

two students had received A’s in chemistry all semester. But
on the night before the final exam, they were partying in an-
other state and didn’t get back to Duke until it was over.

Their excuse to the professor was that they had a flat tire,
and they asked if they could take a make-up test. The pro-

fessor agreed, wrote out a test and sent the two separate
rooms to take it. The first question (on one side of the paper)

was worth 5 points, and they answered it easily. Then they
flipped the paper over and found the second question, worth
95 points:”which tire was it?” what was the probability that

both students would say the same thing?
Solution: 1/4 since here we need to find the probability that

both say the same tire no.which are (1, 1), (2, 2), (3, 3), (4, 4)
so 4/16.

(c) The following question was asked of a class of students. ”I was

driving to school today, and aone of my tires went flat. which
tire do you think it was?” Assume that the two-test takers

are randomly chosen from the general population. What is
the probability that they will give the right answer to this
question.

Solution: should be 1/16 since here the person are randomly
chosen then the probability that both would give the right

answer is 1/16.
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12.6 Theory Questions

(a) What is a theorem??

A statement if is true for a few examples then can we say that
we have proved that its a theorem !

What is a converse of a theorem??
If a statement is true say ”If ... then ...” then can we say that

the theorem is also true in the converse side..??
If a statement is being proved to be theorem.. then can we
say its true for a given case...??

(b) Is logaN
r = r logaN ...? when can we say that the identity is

true?

(c)

12.7 Pool of Ist level problems.

Example 12.7.1. Prove that 1√
1

+ 1√
2

+ ... + 1√
n
>

√
n for an

arbitrary natural n ≥ 2. Solution:
We show that 1√

n+1
>

√
n+ 1 −√

n see how?? adding the above

question’s L.H.S on both sides and using the inequality true for k =
n we get the result true for n+1 also. hence proved by induction.

12.8 Pool of IInd level of problems
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